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Abstract: This paper proposes a predictive dispatch model to manage energy flexibility in the
domestic energy system. Electric Vehicles (EV), batteries and shiftable loads are devices that provide
energy flexibility in the proposed system. The proposed energy management problem consists of two
stages: day-ahead and real time. A hybrid method is defined for the first time in this paper to model
the uncertainty of the PV power generation based on its power prediction. In the day-ahead stage, the
uncertainty is modeled by interval bands. On the other hand, the uncertainty of PV power generation
is modeled through a stochastic scenario-based method in the real-time stage. The performance of the
proposed hybrid Interval-Stochastic (InterStoch) method is compared with the Modified Stochastic
Predicted Band (MSPB) method. Moreover, the impacts of energy flexibility and the demand response
program on the expected profit and transacted electrical energy of the system are assessed in the case
study presented in this paper.

Keywords: decision-making under uncertainty; domestic energy management system; energy
flexibility; interval optimization; stochastic programming

1. Introduction

1.1. Aims and Motivation

In the last decade, power systems have faced new challenges due to the increment of the
distributed renewable energy resources. Renewable energy resources decrease the greenhouse gas
emissions and costs related to electricity production [1]. However, the integration of these intermittent
energy resources leads to energy management problems based on the scale of the energy system [2].
At a smaller scale, Domestic Energy Management Systems (DEMSs) enable the residential customers
to manage their loads in order to minimize the electricity cost. Generally, there are two approaches for
energy management of the DEMSs. These approaches consist of centralized and decentralized systems.
Based on the approach of the system, different structures of the controlling and communicating systems
are required [3].
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1.2. Literature Review

Various research has been presented for optimal energy scheduling at the scale of the smart
homes and smart grids that can be classified based on their goals, strategies, utilized technologies
and software. In [4,5], the authors discussed the necessities of using computational intelligence in
the DEMSs and a review of energy management systems based on multi-agent systems, respectively.
On the other hand, in [6], the present and future perspectives regarding EVs and their operation
modes in smart grids and smart homes have been discussed. In [7], the authors proposed a method to
schedule the local energy resources optimally. Minimizing the loss of energy and purchasing electricity
cost were the main goals of the authors. In [8], the authors defined the DEM problem in connection
with local energy nodes. Furthermore, in [8], homes have a two-way communication with the market
and can manage energy locally. In [9], a domestic demand response has been implemented in a
distribution grid. The real-time price is the main goal of the demand response program based on the
direct load control in [9]. Furthermore, the uncertainty of the price and load has been considered in [9].
Price prediction has been used instead of communication between homes in the distribution network.

In [10], a DEMS has been developed for day-ahead energy scheduling considering hourly pricing
and the peak power constraint based on the demand response programs. The authors of [11] proposed
a method to manage the energy of EV and energy storage systems according to the dynamic pricing,
peak power limitation and demand response programs. The proposed Domestic Energy Management
(DEM) problem has been modeled by mixed-integer linear programming. In [12], the authors propose a
decentralize strategy for optimal energy scheduling under the large penetration of EVs. This interaction
has been considered between consumers and the aggregator in [12]. This way, end-users send their
optimum demand decisions and reschedule their demands based on the signals of the aggregator.
In [13], a rescheduling DEMS has been presented to make the optimum decisions through the day and
avoid the negative impact of price uncertainty.

The authors of [14] presented a multi-time scale DEM problem that includes EV and different
types of electrical loads. Furthermore, the authors introduced the improved optimization algorithm
to solve the DEM problem. In [15], a chance constraint model has been presented to optimize the
performance of the domestic devices. The improved particle swarm optimization method has been
used to optimize the problem based on the proposed demand response program. In [16], the authors
introduced the Stackelberg game-based method to maximize the profits of the costumers and retailers
simultaneously. In the proposed home model of [16], electrical loads of customers are elastic based
on EVs. Furthermore, the price-based DR has been implemented in [16]. In [17], the DEM problem
has been solved by stochastic dynamic programming considering EV. The authors proved that the
EV is one source of uncertainty in the system due to the EV’s plug-in time, plug-out time and charge
demand for mobility. Hence, the plug-state of the EV has been modeled through a Markov chain in [17].
In [18], a DEMS has been presented as part of an organization-based multi-agent system. Besides,
the uncertainty of distributed energy resources has been considered through an Modified Stochastic
Predicted Band (MSPB) method used to model the DEM problem.

1.3. Contributions

In the literature, several relevant advances have been accomplished in the DEMS domain.
These mostly refer to the study and analysis of the several resources’ impact on the management
process, namely flexible loads, EVs, batteries and generation. The interaction with the electricity
market and the participation in demand response programs has also been explored, and this research
is leading to promising outcomes, but modeling the electricity market at the local level has not been of
interest to the authors in the previous works. However, the local electricity market has been introduced
in [18], but the impact of the flexibility has not been evaluated in [18]. The research dealing with the
uncertainty associated with the several resources is, however, still at an initial stage. Although some
relevant works can be found in the literature, there are still many loose ends due to the difficulty in
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correctly identifying, measuring, modeling and representing the different sources of uncertainty, so
that these can be correctly considered by DEMS scheduling, dispatch and management models.

In order to overcome the limitations in the field, this paper proposes a two-stage predictive
dispatch model to manage energy flexibility in the domestic energy system. EV, battery and shiftable
loads are in charge of providing the energy flexibility. A novel hybrid (InterStoch) method is defined for
the first time in this paper to model the uncertainty of the PV power generation. In the first stage, the
day-ahead stage, the uncertainty is modeled by interval bands. However, a stochastic scenario-based
method is used to consider the uncertainty of PV power generation in the second stage, the real-time
stage. Finally, the performance of the proposed hybrid Interval-Stochastic (InterStoch) method is
compared with the MSPB method that was introduced in [18,19].

The rest of this paper is organized as follows. Section 2 introduces the proposed hybrid
interval-stochastic method. Then, the domestic energy management problem is described in Section 3.
Section 4 provides the simulation results. Finally, Section 5 summarizes the conclusions.

2. Interval-Stochastic Method

2.1. Data

In this paper, the predicted data from [18] have been used. For simplicity, only the uncertainty
of PV power generation is considered. As shown in Table 1, the predicted data in each time step
consist of the central forecasting and up/down deviation. Hence, the predicted data are limited to
the upper/lower band based on the central forecasting and up/down deviation. It is noticeable that
this paper concentrates only on modeling the uncertainty due to PV power prediction in the system.
Hence, the forecasting system is not explained in this paper. The presented data of Table 1 are the
inputs of the energy management system. Therefore, the energy management system makes optimum
decisions through the InterStoch method.

Table 1. Predicted data of uncertain variables [18].

t Ppred
pvt (kW) σdown

pv (kW) σ
up
pv (kW) θ

pred
outt

(◦C) Lpred
mrst (kW)

1 0 0.00 0.00 5.5 0.005

2 0 0.00 0.00 5.5 0.005

3 0 0.00 0.00 5.2 0.005

4 0 0.00 0.00 5.2 0.005

5 0 0.00 0.00 4.8 0.005

6 0 0.00 0.00 5.5 0.005

7 0.10 0.01 0.02 6.5 0.005

8 0.20 0.02 0.04 7.5 0.005

9 0.42 0.03 0.07 9.8 0.005

10 0.76 0.08 0.26 10 0.005

11 1.1 0.12 0.23 11 0.005

12 1.32 0.13 0.26 12 0.005

13 1.91 0.10 0.19 12 0.005

14 0.85 0.02 0.04 12 0.005

15 0.29 0.02 0.04 11 0.005

16 0.31 0.02 0.03 10 0.005

17 0.06 0.01 0.01 9 0.005

18 0 0.00 0.00 8.5 0.005

19 0 0.00 0.00 8 0.005

20 0 0.00 0.00 7.5 1.218

21 0 0.00 0.00 7 0.262

22 0 0.00 0.00 6.5 0.14

23 0 0.00 0.00 6.2 0.127

24 0 0.00 0.00 6 0.005
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2.2. Interval Model

In the day-ahead stage, PV system power generation is limited between bands according to the
forecasting deviations. The minimum band represents the deviation below the central forecasting, and
the maximum band represents the deviation above the central forecasting. Pda

pvt intends to converge to
the maximum/minimum band in the best/worst case. Therefore, Equation (1) can be divided into
Equations (2) and (3) in the best and worst cases, respectively. This way, an auxiliary parameter is
added in these equations as a slack parameter for the decision-maker. This parameter is denoted
as the Optimistic Coefficient (OC), α, which is between zero and one, and had been defined for
the first time in [19]. Hence, Pda

pvt converges to the best/worst case when the decision-maker has
the pessimistic/conservative perspective by adding α to Equations (2) and (3) and summing over
them, as seen in Equation (4). Then, Equations (4) and (5) are obtained through simplification of
Equations (1)–(3).

[H]Ppred
pvt − σdown

pvt ≤ Pda
pvt ≤ Ppred

pvt + σ
up
pvt (1)

Ppred
pvt ≤ Pda

pvt ≤ Ppred
pvt + σ

up
pvt : OC = 1 (2)

Ppred
pvt − σdown

pvt ≤ Pda
pvt ≤ Ppred

pvt : OC = 0 (3)

Ppred
pvt αpv − (Ppred

pvt − σdown
pvt )(1− αpv) ≤ Pda

pvt (4)

≤ (Ppred
pvt + σ

up
pvt)αpv + Ppred

pvt (1− αpv)

Ppred
pvt − σdown

pvt (1− αpv) ≤ Pda
pvt ≤ Ppred

pvt + σ
up
pvt αpv (5)

2.3. Stochastic Model

In the real-time stage, stochastic programming is used to model the uncertainty of the PV power.
Therefore, scenarios with their corresponding probabilities are defined in this section. This way, the
prediction mean and deviation are defined as metric parameters by Equations (6) and (7), respectively.
These are used to generate the scenarios of the PV power in the real-time stage. In this step, three
scenarios are defined to model the uncertainty of the PV system’s power generation. The first scenario,
the up scenario, describes data that have a deviation above the central forecasting. The second scenario,
the down scenario, represents data that have a deviation below the central forecasting. Then, the
third scenario describes the central forecasting data. The amounts of these scenarios are determined
through Equations (8)–(10). Moreover, the corresponding probabilities are obtained according to
Equations (11)–(13).

Pmean
pvt = Ppred

pvt +
σ

up
pvt − σdown

pvt

2
(6)

∆pvt =
σ

up
pvt + σdown

pvt

2
(7)

Prt
pvt(ω = ω1) = Ppred

pvt + σ
up
pvt (8)

Prt
pvt(ω = ω2) = Ppred

pvt − σdown
pvt (9)

Prt
pvt(ω = ω3) = Ppred

pvt (10)

π(ω = ω1) = Prob(Ppred
pvt + σ

up
pvt > Pmean

pvt + ∆pvt) (11)

π(ω = ω2) = Prob(Ppred
pvt − σdown

pvt < Pmean
pvt − ∆pvt) (12)

π(ω = ω3) = 1− π(ω = ω1)− π(ω = ω2) (13)
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3. Domestic Energy Management Problem

We consider that each smart home can participate in two different types of Local Electricity
Market (LEM), not the wholesale market [18]. These LEMs are called day-ahead and real-time markets.
In practice, the proposed LEMs can be operated by distribution system operator or retailers. Hence,
the distribution system operator or retailers are responsible for providing the local electricity market
framework for their agents that are in their region or have contracts to transact energy with them.
Besides, it is considered that smart homes are price-takers in the LEM, and they can buy electricity from
the local electricity market based on the Time of Use (ToU) tariff. Furthermore, it is assumed that the
sold/bought electricity prices to/from the local electricity market are different. The domestic energy
management problem is modeled as a two-stage problem. The first stage is called the day-ahead stage,
and the second stage is called the real-time stage. Here, the Expected Profit (EP) is defined by an
Objective Function (OF) to maximize the profit of energy services. In Equation (14), EP is the sum
of the day-ahead EP, EPda, and the real-time EP, EPrt, which are OFs of the day-ahead and real-time
stages, respectively.

EP = EPda + EPrt (14)

3.1. Day-Ahead Stage

The objective function of the domestic energy management system in the day-ahead local
electricity market is defined in the Day-Ahead (DA) stage. The purpose is to make the best decisions
in each of the time periods during the day d. However, the DA stage obtains optimum decisions for
the system in day d-1. Hence, the objective function for the DA stage is represented in (15):

EPda =
Nt

∑
t=1

(λ
′
tP

da
pv,outt + ∑

k
γkλ

′
tP

da
dis,outt

(k)− λtPda
nett) (15)

EPda consists of three parts. The first and second parts represent the revenue of selling the
electrical energy produced by PV and Energy Storage Systems (ESSs) to the local market. The third
part states the costs of buying the electrical energy from the local market. It should be mentioned that
participation factor, γk, is a binary parameter that is defined for the first time in this paper in order
to consider the participation of the ESSs in the DA stage. If the participation factor is equal to zero,
ESSs are used to trade energy only in the real-time LEM. In other words, homes can utilize the full
capacity of the ESSs in the day-ahead market if the participation factor equals one. The constraints of
the DA stage are:

Pda
nett + Pda

pv,int
+ ∑

k
γkPda

dis,int
(k) =

Nj

∑
j=1

Lda
jt + γkPda

cht
(k) (16)

− Smax ≤ Pda
nett − Pda

pv,outt −∑
k

γkPda
dis,outt

(k) ≤ Smax (17)

Equation (16) establishes the power balance equation due to the power outputs of the PV,
Pda

pv,int
, and ESSs, Pda

dis,int
(k), injected into the home, the grid power input, Pda

nett
, electrical loads, Lda

jt ,

and the charged power of ESSs, Pda
cht

(k). In this paper, power loss is not considered for simplicity.
Equation (17) represents the power flow limitation through the distribution line, which ends at the
building. Smax expresses the maximum power capacity of the distribution line that links the smart
home with the distribution power network. Besides, there are some limitations corresponding to all
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appliances. Only the maximum and minimum limitations of the energy produced/consumed are
defined in each device at this stage because the uncertainty is not considered in the DA stage.

Pda
pvt = Pda

pv,int
+ Pda

pv,outt (18)

Ppred
pvt − σdown

pvt (1− αpv) ≤ Pda
pvt ≤ Ppred

pvt + σ
up
pvt αpv (19)

Lda
jt = Lpred

jt
(20)

Nj

∑
j=1

Lda
jt = Lda

sht
+ Lda

swht
+ Lda

ppt + Lda
mrst (21)

The total power generation of the PV is stated in (18). Equation (19) represents the power output
limitations of the PV system. Besides, Equation (20) represents the total electrical power consumed.

Energy Storage Systems

ESSs can be utilized economically based on the charge and discharge strategies in the DEM
problem. Mobility patterns and storage characteristics of the ESSs are different factors that should be
considered in modeling the ESSs. However, the mobility pattern is only related to the EVs.

Cda
t (k) = Cda

t−1(k) + Pda
cht

(k)ηB2V − Pda
dist

(ω)/ηV2B, t ≥ 2 (22)

Cda
t (ω) = Ci, t = 1

Pmin
ev ≤ Cda

t (k) ≤ Pmax
ev (23)

− wmin ≤ Cda
t (k)− Cda

t−1(k) ≤ wmax, t ≥ 2 (24)

− wmin ≤ Cda
t (k)− Ci(k) ≤ wmax, t = 1

0 ≤ Pda
dist

(k) ≤ wmaxuda
t (25)

0 ≤ Pda
cht

(k) ≤ wmin(1− uda
t ) (26)

Pda
dist

(k) = Pda
dis,int

(k) + Pda
dis,outt

(k) (27)

3.2. Real-Time Stage

In this stage, the objective function of the home due to participating in the RTLEM is defined.
In addition, the uncertainties of decision-making variables are considered through a stochastic
scenario-based method. These variables are determined based on the outputs of the first stage and
the prediction engine. It is noticeable that the traded energy of the homes in the real-time market
is different from their traded energy in the day-ahead market because of the PV power generation
uncertainty. In other words, the traded energy of smart homes in real time can be positive or negative
due to the prediction error of the PV power generation. The expected profit of the real-time stage, EPrt,
is represented as:

EPrt = ∑Nt
t=1 ∑NΩ

ω=1 π(ω)(λt(Prt
pv,outt

(ω)− Pda
pv,outt

)

+∑k(λt(Prt
dis,outt

(k, ω)− γkPda
dis,outt

(k))− λt(Prt
cht

(ω)− γkPda
cht

(k)))

−∑
Nj
j=1 VOLLjLshed

jt (ω)−Vs
pvSpvt(ω))

(28)

EPrt consisting of five parts. The first part represents the revenue for selling energy produced by
PV to the real-time local electricity market. The total cost of electrical energy that is bought from the
BLEMis represented in the second part. The third part expresses the profit due to selling the stored
electrical energy of ESSs to the local market. The Value of Loss Load (VOLL) cost, VOLLj, is stated
in the fourth part. Finally, the spillage cost of the PV system is represented in the last part. As seen
in (28), it is proposed that if the PV power generation in the real-time stage, Prt

pv,outt
(ω), is more than
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the PV power generation in the DA stage, the DEMS can only sell its extra power at the net price,
λ, that is less than the price that is established for the purchase of the power generated by the PV on
the day-ahead local market, λ

′
. Hence, the DEMS can increase its expected revenue if it has better

day-ahead prediction accuracy of its PV power generation.

Prt
nett(ω) + Prt

pv,int
(ω) + ∑

k
Prt

dis,int
(k, ω) =

Nj

∑
j=1

(Lrt
jt (ω)− Lshed

jt (ω))

+ ∑
k

Prt
cht

(k, ω)

(29)

− Smax ≤ Prt
nett(ω)− (Prt

pv,outt(ω) + ∑
k

Prt
dis,outt

(k, ω)) ≤ Smax (30)

In the balancing stage, Equation (29) is the power balance equation, and (30) shows the power
flow limitation in a distribution line. Besides, there are specific definitions for all appliances in the
building energy system whose uncertainties are considered in the balancing stage.

3.2.1. PV System

The power output of PV in the real-time stage, Prt
pvt , is obtained based on (31).

Prt
pvt(ω) = Prt

pv,pt(ω)− Spvt(ω) (31)

Prt
pvt(ω) = Prt

pv,int
(ω) + Prt

pv,outt(ω) (32)

0 ≤ Spvt(ω) ≤ Prt
pv,pt(ω) (33)

Here, Prt
pv,pt(ω) is the potential power generation of PV in real time, and Spvt(ω) is the spillage

power of the PV system. Equation (32) represents that the total power output of PV equals its power
output consumed in the home, Prt

pv,int
(ω), and the amount of power generation that is sold to the

real-time local market, Prt
pv,outt

(ω). The PV spillage is the amount of power that is spilled in period
t. This amount is positive or equal to zero and is limited to the actual power generation of PV as
represented in (33).

3.2.2. Energy Storage Systems

ESSs can be utilized economically based on the charge and discharge strategies in the domestic
energy management problem.

Crt
t (k, ω) = Crt

t−1(k, ω) + Prt
cht

(k, ω)ηB2V − Prt
dist

(k, ω)/ηV2B, t ≥ 2 (34)

Crt
t (k, ω) = Ci, t = 1

Pmin
ev ≤ Crt

t (k, ω) ≤ Pmax
ev (35)

− wmin ≤ Crt
t (k, ω)− Crt

t−1(k, ω) ≤ wmax, t ≥ 2 (36)

− wmin ≤ Crt
t (k, ω)− Ci ≤ wmax, t = 1

0 ≤ Prt
dist

(k, ω) ≤ wmaxurt
t (37)

0 ≤ Prt
cht

(k, ω) ≤ wmin(1− urt
t ) (38)

Prt
dist

(k, ω) = Prt
dis,int

(k, ω) + Prt
dis,outt

(k, ω) (39)

The power generation of ESSs, Prt
dist

(ω), is expressed in (39). Equation (34) represents the state
of charge balance equation in an ESS, where Ci is the initial state of charge in the ESS. Maximum and
minimum limitations of the ESSs’ state of charge are represented in Equation (35). Ramping constraints
of ESSs are represented in Equation (36). Moreover, Equations (37) and (38) express the constraints of
ESS in the discharge and charge states, respectively.
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3.3. Electrical Loads

Electrical loads include loads that can be controllable and/or shiftable. In this paper, three types
of loads are modeled: the space heater, Lsht , which is a controllable load, the storage water heater, Lswht ,
which is a shiftable load, and the must-run services, Lmrst , which are non-controllable-shiftable loads.
Equations (40) and (41) define total electrical load and total load shedding, respectively. These loads
are described in the following.

Nj

∑
j=1

Lrt
jt (ω) = Lrt

sht
(ω) + Lrt

swht
(ω) + Lrt

ppt(ω) + Lrt
mrst(ω) (40)

Nj

∑
j=1

Lshed
jt (ω) = Lshed

sht
(ω) + Lshed

swht
(ω) + Lshed

ppt (ω) + Lshed
mrst(ω) (41)

3.3.1. Space Heater

The space heater provides the indoor temperature at the desired temperature. Equation (42)
represents the relation between the indoor temperature and its power consumption. In Equation (42),
θ0 is the initial indoor temperature, which is assumed to be equal to the desired temperature.
Equation (43) expresses that indoor temperature is limited to 1 ◦C more or less than the desired
temperature. Furthermore, the maximum and minimum bands of the space heater load are represented
in (44). In addition, the load shedding constraint of the space heater is represented in (45).

θint+1(ω) = θint(ω)e−1/RC + Lrt
sht
(ω)R(1− e−1/RC) (42)

+ θ
pred
outt

(1− e−1/RC), t ≥ 2

θrt
int
(ω) = θ0 = θdes, t = 1

− 1 ≤ θrt
int
(ω)− θdes ≤ 1 (43)

Lmin
sh ≤ Lrt

sht
(ω) ≤ Lmax

sh (44)

0 ≤ Lshed
sht

(ω) ≤ Lrt
sht
(ω) (45)

3.3.2. Storage Water Heater

The storage water heater stores the heat in the water tank. The maximum and minimum
limitations of the storage water heater’s load and energy consumption are represented in (46) and (47),
respectively. The load shedding constraint of the storage water heater is expressed in (48).

Lmin
swh ≤ Lrt

swht
(ω) ≤ Lmax

swh (46)
Nt

∑
t=1

Lrt
swht

(ω) = Uswh (47)

0 ≤ Lshed
swht

(ω) ≤ Lrt
swht

(ω) (48)

3.3.3. Pool Pump

The maximum running hours of the pool pump equal Ton hours per day. Equation (49) represents
the limitations of the pool pump power consumption in each hour. Equation (50) represents the
maximum hour constraint that that pool pump can be turned on. Moreover, the load-shedding
constraint related to the pool pump is represented in (51).
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Lmin
pp zt(ω) ≤ Lrt

pp(ω) ≤ Lmax
ppt zt(ω) (49)

Nt

∑
t=1

zt(ω) ≤ Ton (50)

0 ≤ Lshed
ppt (ω) ≤ Lrt

ppt(ω) (51)

3.3.4. Must-Run Services

Must-run services are defined as loads that should be provided quickly. In this paper, it is assumed
that there is no uncertainty due to the prediction of must-run services as represented in Equation (52).
Furthermore, the load shedding constraint is represented by (53).

Lrt
mrst(ω) = Lpred

mrst (52)

0 ≤ Lshed
mrst(ω) ≤ Lrt

mrst(ω) (53)

4. Simulation Results

4.1. Case Study

To evaluate the performance of the proposed DEMS, the modified test system from [19] is used for
which the wind micro-turbine has been omitted from the test system in this paper. The maximum power
produced by the PV system is 2 kW. The battery can store between 0.48 and 2.4 kWh, and the maximum
charging/discharging rates are 400 W. Besides, the charging and discharging efficiencies are 90%.
The maximum heating power of the Space Heater (SH) equals 2 kW to maintain the temperature of the
house within ±1 of the desired temperature (23 ◦C). The thermal resistance of the building shell equals
18 ◦C/kW, and Cequals 0.525 kWh/◦C . The energy capacity of the Storage Water Heater (SWH) is
10.46 kWh, which has a 2-kW heating element. The rated power of the Pool Pump (PP) is 1.1 kW, and it
can run for a maximum of 6 h during the day. The program implemented is solved in GAMS 23.7 [20].
Table 2 gives the price data of the system. Moreover, VOLL and the spillage costs of PV-battery power
generation are shown in Table 3.

Table 2. ToU Price data of the system.

Time (hour)
Price ($/MW)

λi λnet

23–7 2.2 0.0814

8–14 2.2 0.1408

15–20 2.2 0.3564

21–22 2.2 0.1408

Table 3. Value of Loss Load (VOLL) and spillage costs. SH, Space Heater; SWH, Storage Water Heater;
PP, Pool Pump.

Time (hour)
VOLL ($/MW) Spillage Cost ($/MW)

SH SWH PP MRS PV

22–7 1 1 −0.5 2.2 4

8–21 1 1 0.25 2.2 4

4.2. Impact of Energy Flexibility

In this section, the energy flexibility of the proposed DEMS is assessed. Hence, four scenarios are
defined to analyze the performance of the system. In Scenario 1, neither the battery nor the EV are
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defined in the day-ahead stage of the energy management problem (γbattery = γEV = 0). In Scenario 2,
only the battery is considered in the day-ahead stage (γbattery = 1, γEV = 0). However, only the EV is
considered in the day-ahead stage in Scenario 3 (γbattery = 0, γEV = 1). In Scenario 4, both (battery
and EV) are modeled in the day-ahead stage (γbattery = γEV = 1).

The impact of ESSs on the total, day-ahead and real-time expected profits of the system is shown in
Figure 1. Furthermore, the influence of the optimistic coefficient, α, is evaluated in Figure 1. From this
figure, it is clear that an increment of α increases the total and day-ahead expected profits because α can
directly affect the power produced by the PV system through interval bands in the day-ahead stage.
Hence, α increases the power generated from the PV panels in the day-ahead stage and the day-ahead
expected profit. However, α has a negative impact on the amounts of the real-time expected profit.
Moreover, the expected profit of the system is maximum in Scenario 4. In other words, increasing the
energy flexibility of the system increases the total, day-ahead and real-time expected profits of the
system. Hence, the maximum and minimum amounts of the expected profit are in Scenarios 4 and
1, respectively. Furthermore, the expected profit in Scenario 3 is more than Scenario 2 because the
ramping rate of the EV is more than the battery. Therefore, the EV can provide more energy flexibility
than the battery in this proposed system.

Figure 1. Impact of energy flexibility on the amounts of total, day-ahead and real-time expected profits.

4.3. Impact of Prediction Accuracy

The prediction accuracy due to the PV power generation and its influence on the total expected
profit is analyzed in this section. It is noticeable that the prediction accuracy of the outdoor temperature
of the home and must-run services is considered to be 100% in this paper in order to simplify the
model. Besides, it is considered that the battery and EV are modeled in the day-ahead stage in this
case. As mentioned before, α increases the amount of total expected profit of the system.

According to Figure 2, the impact of the prediction accuracy on the total expected profit is
evaluated based on the optimistic coefficient. Furthermore, an increase in the prediction accuracy has a
smooth negative effect on the expected profit. In other words, an increment in the prediction accuracy
causes a decrease of the managed power of the PV in the proposed DEMS. Hence, this decreases
the expected profit of the system. According to this assessment, the maximum amount of the total
expected profit of the system is where α and the prediction accuracy equal one and zero, respectively.
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Figure 2. Impact of prediction accuracy on the total expected profit of the system. OC, Optimistic
Coefficient.

4.4. Impact of Demand Response

In this section, the effect of the Demand Response Program (DRP) on the EPs and the home’s
electrical energy that is sold/bought to/from the local electricity market is assessed in four scenarios:
with DRP, with only flexible VOLL, with only the ToU price and without DRP. Here, DRP consists of
the flexible VOLL and ToU price.

As seen in Table 4, DRP causes a positive effect on the amount of total expected profit of the
DEMS. In other words, while EPda is increased when DRP is not considered in the system, EPrt

is decreased because electrical loads are not flexible when DRP is not considered in the DEMS.
Furthermore, The sold/bought electrical energy of the DEMS considering DRP is more/less than
without considering DRP because it makes DEMS able to shift the electrical load in the time horizon of
the energy management problem and reduce the loads under some conditions. However, the impact
of the flexible VOLL and ToU price are not the same. Although both of them increase the sold electrical
energy, the total expected profit considering only flexible VOLL is more than considering only the ToU
price. This is because of the positive effect of the flexible VOLL program in the real-time stage of the
DEM problem.

Table 4. Impact of demand response program on the amount of expected profit of the system and
sold/bought electrical energy to/from the local electricity market. DRP, Demand Response Program.

Demand Response Scenarios
α = 1

EPtotal EPda EPrt Esold Ebought

With DRP (Flexible VOLL + ToU) 47.571 40.003 7.568 18.605 43.033

With Only Flexible VOLL 47.775 42.409 5.365 14.406 37.995

With Only ToU Price 42.071 40.003 2.068 15.236 49.432

Without DRP 42.275 40.409 −0.135 13.847 47.842

4.5. Impact of Uncertainty Modeling

In this section, the modeling of uncertainty is evaluated through a comparison of the InterStoch
method and MSPB. Although the InterStoch method has been defined in this paper, MSPB has been
defined in [18,19]. For simplicity, only the battery has been considered, and γbattery is equal to zero in
this section. The amounts of total, day-ahead and real-time expected profits are compared in optimistic
and conservative cases based on the InterStoch and MSPB methods. As seen in Table 5, the optimistic
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case of both methods is where α equals one. However, the pessimistic case based on the InterStoch and
MSPB methods is where α equals zero and 0.4, respectively, as seen in Table 6. Tables 5 and 6 show that
the difference between the amounts of the expected profits in the optimistic and conservative cases
based on the InterStoch method is less than the MSPB method. Besides, Figure 3 shows the impact
of α on the total expected profit in both methods. Figure 3 also illustrates that the worst case of the
DEMS based on the InterStoch method is where α equals zero, and there is a linear pattern between the
increment of the optimistic coefficient and the total expected profit when uncertainty is modeled by
the InterStoch method. This point makes the system easier to analyze and more reliable, as it is able to
further mitigate the uncertainty, dealing with it in away that its impact on the expected results is highly
reduced. Moreover, the amount of the total expected profit in the worst case of the InterStoch is less
than its amount in the worst case of the MSPB method. Hence, the InterStoch method is more robust
than the MSPB method to model uncertainty in the proposed domestic energy management problem.

Figure 3. Impact of uncertainty modeling on the total expected profit of the system.

Table 5. Impact of uncertainty modeling on day-ahead, real time and total expected profits under the
optimistic case. InterStoch, Interval-Stochastic; MSPB, Modified Stochastic Predicted Band.

Expected Profit ($)
InterStoch (α = 1) MSPB (α = 1)

With Uncertainty Without Uncertainty With Uncertainty Without Uncertainty

EPtotal 12.798 10.549 51.707 51.618

EPda 7.234 4.836 49.232 49.232

EPrt 5.564 5.713 2.475 2.386

Table 6. Impact of uncertainty modeling on day-ahead, real time and total expected profits under the
conservative case.

Expected Profit ($)
InterStoch (α = 0) MSPB (α = 0.4)

With Uncertainty Without Uncertainty With Uncertainty Without Uncertainty

EPtotal 10.569 10.549 11.449 51.618

EPda 4.836 4.836 4.836 49.232

EPrt 5.733 5.713 6.613 2.386
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5. Conclusions

In this paper, the energy flexibility management of the home electricity system based on the
predictive dispatch model has been introduced. Furthermore, the InterStoch hybrid method to
model the uncertainty of the PV power generation has been defined for the first time in this paper.
The proposed method consists of two stages. In the first stage, the day-ahead domestic energy
management problem has been modeled by an interval method to consider the uncertainty due to
the prediction error of PV power generation. However, a real-time problem has been represented
based on the stochastic method to consider the uncertainty. The performance of the proposed domestic
energy management problem has been evaluated based on a comparison between the proposed hybrid
(InterStoch) and MSPB methods. Furthermore, the impact of the proposed energy flexibility model,
prediction accuracy and demand response program on the expected profit and transacted electrical
energy of the system and the reliability of the results has been assessed. From the simulation, it is
concluded that:

• Increasing the energy flexibility increases the total, day-ahead and real-time expected profits of
the system.

• The EV can provide more energy flexibility than the battery in the proposed system.
• The increment of α increases the PV power produced in the day-ahead stage and day-ahead

expected profit. However, α has a negative impact on the amounts of the real-time expected profit.
• The increment of the prediction accuracy has a smooth negative impact on the expected profit.
• For the considered case study, the demand response program has a positive effect on the amount

of the DEMS’s total expected profit. Furthermore, the demand response program decreases the
domestic electrical energy load.

• The amount of the total expected profit in the worst case of InterStoch is less than its amount in
the worst case of the MSPB method. Hence, the InterStoch method is more robust than the MSPB
method to model uncertainty in the proposed domestic energy management problem.

Finally, it should be mentioned that the uncertainty of electrical load, the EV mobility pattern
and market prices have not been modeled in our proposed DEMS. Our future work will consist of
modeling the uncertainty related to the EV and must-run services and to evaluate their impacts on the
transacted energy of the homes for the local electricity market.
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Nomenclature

Indices

t Index of time periods
j Index of electrical loads
k Index of energy storage systems
ω Index of PV power scenarios
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Variables

EP Expected profit
EPda Day-ahead expected profit
EPrt Real-time expected profit
Pda

pvt
Day-ahead total power generation for the PV system in period t

Pda
pv,outt

Day-ahead power generation for the PV system that is injected to the power grid in period t
Pda

pv,int
Day-ahead power generation for the PV system that is injected to the home in period t

Pda
dist

(k) Day-ahead total discharged power for energy storage system k in period t

Pda
dis,outt

(k)
Day-ahead discharged power for energy storage system k that is injected to the power grid in
period t

Pda
dis,int

(k)
Day-ahead discharged power for energy storage system k that is injected to the home in
period t

Pda
cht

(k) Day-ahead charged power for energy storage system k that is injected to the home in period t
Pda

nett
Day-ahead power generation that is bought from the local electricity market in period t

Lda
jt Day-ahead electrical load j in period t

Lda
sht

Day-ahead electrical load of the space heater in period t
Lda

swht
Day-ahead electrical load of the storage water heater in period t

Lda
ppt

Day-ahead electrical load of the pool pump in period t
Lda

mrst
Day-ahead electrical load of the must-run services in period t

Cda
t (k) Day-ahead state of charge for energy storage system k in period t

uda
t Day-ahead discharging commitment binary variable for energy storage system k in period t

Prt
pvt

(ω) Real-time total power generation for the PV system in period t and in scenario ω

Prt
pv,outt

(ω)
Real-time power generation for the PV system that is injected to the power grid in period t
and in scenario ω

Prt
pv,int

(ω)
Real-time power generation for the PV system that is injected to the home in period t and in
scenario ω

Prt
dist

(k, ω) Real-time total discharged power for energy storage system k in period t and in scenario ω

Prt
dis,outt

(k, ω)
Real-time discharged power for energy storage system k that is injected to the power grid in
period t and in scenario ω

Prt
dis,int

(k, ω)
Real-time discharged power for energy storage system k that is injected to the home in
period t and in scenario ω

Prt
cht

(k, ω)
Real-time charged power for energy storage system k that is injected to the home in period
t and in scenario ω

Prt
nett

(ω)
Real-time power generation that is bought from local electricity market in period t and
in scenario ω

Lrt
jt Real-time electrical load j in period t and in scenario ω

Lshed
jt (ω) Load shedding for load j in period t and in scenario ω

Spvt (ω) Spillage amount for PV in period t and in scenario ω

Prt
pv,pt

(ω) Potential power generation for PV in real time in period t and in scenario ω

Lrt
sht

(ω) Real-time electrical load of the space heater in period t and in scenario ω

Lrt
swht

(ω) Real-time electrical load of the storage water heater in period t and in scenario ω

Lrt
ppt

(ω) Real-time electrical load of the pool pump in period t and in scenario ω

Lrt
mrst

(ω) Real-time electrical load of the must-run services in period t and in scenario ω

Crt
t (k, ω) Real-time state of charge for energy storage system k in period t and in scenario ω

urt
t (ω)

Real-time discharging commitment binary variable for energy storage system k in period t
and in scenario ω

Lshed
sht

(ω) Load shedding for the space heater in period t and in scenario ω

Lshed
swht

(ω) Load shedding for the storage water heater in period t and in scenario ω

Lshed
ppt

(ω) Load shedding for the pool pump in period t and in scenario ω

Lshed
mrst

(ω) Load shedding for the must-run services in period t and in scenario ω

θint (ω) Indoor temperature in period t and in scenario ω

zt(ω) Commitment binary variable for the pool pump k in period t and in scenario ω



www.manaraa.com

Energies 2017, 10, 1397 15 of 16

Parameters

Ppred
pvt Central forecasting of the PV power generation in period t

σdown
pvt

Down deviation of the PV power prediction in period t
σ

up
pvt Up deviation of the PV power prediction in period t

αpv Optimistic coefficient related to the PV power prediction
Pmean

pvt
Mean of the PV power prediction in period t

∆pvt Mean deviation of the PV power prediction in period t
π(ω) Probability of the PV power generation in scenario ω

λ
′
t Sold electricity price to the local electricity market in period t

λnett Bought electricity price from the local electricity market in period t
γk Participation factor for energy storage system k
Smax Maximum power capacity for the line

Lpred
jt

Predicted electrical load j in period t
ηB2V Charging efficiency for energy storage systems j
ηV2B Discharging efficiency for energy storage systems j
Ci Initial state of charge for energy storage systems
wmax Maximum charging/discharging for energy storage systems
wmin Minimum charging/discharging for energy storage systems
VOLLj Value of loss load for electrical load j
Vs

pv Spillage cost for the PV system
θ0 Initial indoor temperature
θdes Desired indoor temperature

θ
pred
outt

Predicted outdoor temperature
Lmax

sh Maximum electrical consumption for the space heater
Lmin

sh Minimum electrical consumption for the space heater
R Thermal resistance of the building shell
Lmax

swh Maximum electrical consumption for the storage water heater
Lmin

swh Minimum electrical consumption for the storage water heater
Uswh Energy consumption for the storage water heater
Lmax

pp Maximum electrical consumption for the pool pump
Lmin

pp Minimum electrical consumption for the pool pump
Ton Maximum running hours for the pool pump

Lpred
mrst Predicted electrical load of the must-run services in period t
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